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1 Introduction

Portfolio optimization is one of the most important tasks in the exchange risk manage-

ment of foreign asset investment. For instance, it is well-known that international bond

portfolio return tends to be much more sensitive to the currency composition rather

than the maturity structure. There are three practical issues that should be considered

carefully for the successful risk management of foreign currency portfolio: estimation

risk, adequate risk measure, and predictive accuracy of underlying asset returns. To

handle these issues, we suggest a new Bayesian method of conditional value-at-risk (C-

VaR) portfolio optimization, and examine this with an application. Our method can be

characterized by the corresponding three features distinguished from existing literature:

Bayesian approach, the use of C-VaR, and development of a new multivariate stochas-

tic volatility (MSV) model. Below we briefly discuss the importance of each of these

features.

First, our econometric approach is Bayesian, in which the portfolio selection is done

by maximizing the investor’s expected utility function given the joint posterior predictive

asset return density. There are two advantages from using the Bayesian approach.

The first advantage is to easily reflect parameter and model uncertainty in the return

prediction. The predictive distribution is obtained by integrating out the parameters

and models as well as the future innovations to the returns. This can be done by the

posterior predictive return density simulation. In fact, the estimation risk matters in

portfolio optimization because the plug-in method borrowed in classical works involves

estimation bias as Best and Grauer (1991) and Black and Litterman (1992) show. Ando

(2009) empirically demonstrates that the portfolio performance can be improved by

incorporating the estimation risk. The second advantage is that, using the posterior

predictive return samples, we are able to numerically calculate the investor’s expected

utility, so that the expected utility maximization problem can be solved with respect to

the portfolio weights even if the closed form solution is not feasible. Moreover, one can

incorporate the prior information, which is not contained in the observed data such as

macroeconomic insights and statistical intuitions, into the future return prediction.

The portfolio risk management requires an adequate measure of risk. Since 1990s,

the value-at-risk (VaR) and C-VaR have been widely used as risk measures replacing

the traditional variance measure. VaR is defined as the threshold point of a specific

lower percentile on the return distribution, and C-VaR is the expected loss beyond VaR

level in the lower tail of the distribution. These risk measures are particularly useful
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when investors concern on the downside risk of return on the distribution or the return

distributions are often non-normal with negative kurtosis or even asymmetric. On the

other hand, despite of its popularity, VaR is challenged in some aspects. Theoretically,

VaR has a unfavorable property, the lack of sub-additivity (Artzner, Delbaen, Eber, and

Heath (1999)). Additionally, it has the practical problem of neglecting the remaining

risk beyond the threshold point. Indeed, Rockafellar and Uryasev (2002) indicate that

VaR is biased for the optimum portfolio, which minimizes loss in unfavorable situations.

Meanwhile, C-VaR is coherent satisfying the sub-additivity condition as Alexander and

Baptista (2004) prove. Under the C-VaR, the risk of a diversified portfolio is smaller

than the weighted average risk of its individual assets. Meanwhile, diversification does

not necessarily lead to a reduction in VaR that is not always coherent. For this reason

we use C-VaR as an alternative in this paper.1

The precise estimates of the portfolio C-VaR require accurate predictive return joint

density forecasts because the portfolio return is a linear combination of individual asset

returns. For this, we develop a new multivariate factor stochastic volatility (MSV) model

of currency returns for predictive density simulation. Our MSV model is a modified

version of Yu and Meyer (2006), in which the conditional correlation among the returns,

as well as the volatilities, are stochastic and time-varying. Allowing for time-varying

volatilities and correlations is essential for the following two reasons. The first reason

is the stylized fact that a number of financial asset returns including foreign currencies

and stocks have a time-varying variance-covariance structure.2 The second reason is

that unlike the VaR, the C-VaR is sub-additive and this risk measure always generates

a lower risk level for a diversified portfolio than its individual assets. Because the

diversification benefit depends on the correlation structure, modeling potentially time-

varying conditional correlation is necessary.

Specifically, in the model the currency returns are fully determined by a linear com-

bination of latent factors without errors. Each of the factors is assumed to follow a

first-order autoregressive process with stochastic volatility. By assuming a one-to-one

mapping between the observed asset returns and latent factors, we are able to identify

the factor stochastic volatilities in a stable way. In addition, our estimation does not

suffer from the curse of dimensionality which involves excessive computational burden

1Alexander and Baptista (2004), Hoogerheide and van Dijk (2010), Krokhmal, Palmquist, and Urya-
sev (2002), Pajor and Osiewalski (2012) compare C-VaR to VaR and introduce its methodology and
application in place of VaR.

2For instance, see Harvey, Ruiz, and Shephard (1994), Diebold and Nerlove (1989), Schwert (1989),
Kim, Shephard, and Chib (1998a), and Bollerslev (1990).
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or incapability with large number of assets.

As mentioned above, we deal with the three requirements for foreign currency port-

folio risk management. To the best of our knowledge, this paper is the first work that

attempts C-VaR currency portfolio optimization using a MSV model in a Bayesian

framework. Our Bayesian C-VaR portfolio analysis consists of two steps. The first step

is to simulate the posterior predictive densities of the currency returns. To this end,

we propose a new MSV model with time-varying conditional correlations, and provide

an efficient MCMC algorithm for the posterior inference. In the second step, given the

currency return density forecasts, we conduct the optimal portfolio choice minimizing

the C-VaR through a numerical optimization. We evaluate our portfolio strategy in

terms of out-of-sample C-VaR prediction.

Our work differs from existing studies in several aspects. First, there are many stud-

ies on Bayesian portfolio analysis. Since Zellner and Chetty (1965) pioneered the use of

predictive distribution in portfolio selection, most studies have employed Bayesian port-

folio analysis to consider the estimation risk and utilize investors’ prior information into

posterior updating. For example, Jorion (1986) introduces hyper-parametric prior with

Bayes-Stein shrinkage method, and Black and Litterman (1992) and Pástor (2000) use a

Bayesian approach with informative prior obtained from asset pricing theories. Tu and

Zhou (2010) examine the prior from economic objectives under parameter uncertainty

in stock portfolio choice. Although our work also relies on the Bayesian approach, our

interest is to bring the recent issues such as C-VaR and MSV modeling into the Bayesian

portfolio choice context.

Second, regarding the C-VaR portfolio optimization, Rockafellar and Uryasev (2000)

develop the methodology and its application to portfolio selection with equity and bond.

Krokhmal et al. (2002) also introduce the C-VaR as an objective or constraint in portfolio

choice, and construct a strategic frontier between C-VaR and expected return. Recently,

Wang, Chen, Jin, and Zhou (2010), which is one of the studies most similar to our

work, analyze the C-VaR portfolio of foreign currencies using a GARCH-Copula model.

Unlike our work, however, their econometric approach is not Bayesian and parameter

uncertainty is not considered in the C-VaR portfolio optimization.

Finally, MSV models developed by Harvey et al. (1994) have been commonly used

for multivariate asset return prediction. One technical problem with estimating MSV

models is the so-called curse of dimensionality. To reduce this computational burden,

Jacquier, Polson, Rossi, et al. (1995), Pitt and Shephard (1999), Chib, Nardari, and

Shephard (2006), and Yu and Meyer (2006) propose a parsimonious specification of
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MSV models, which is called a factor stochastic volatility model. In this model multiple

asset returns are generated by the sum of the measurement errors and dynamic common

latent factors. The common factors follow a vector-autoregressive process with stochastic

volatility. Those studies also provide a Bayesian Markov chain Monte Carlo (MCMC)

algorithm for estimation. Our MSV model is a simplified version of Yu and Meyer (2006).

By assuming no measurement errors and the same number of factors as the returns, we

are able to achieve a lower computational cost. In addition, we compare the Student-t

errors with the normal errors since Ishihara and Omori (2016) find a strong evidence in

favor of the fat-tail property of financial asset returns.

In the paper, we present a detailed process through an application to weekly USD/Euro

(EUR), USD/Japanese Yen (JPY), and USD/Korean Won (KRW) data. We begin by

estimating various MSV models for predictive return density simulation. Subsequently,

we also conduct C-VaR portfolio optimization using the predictive densities from each

of the prediction models. The models are compared statistically and economically based

on the out-of-sample experiment. The statistical comparison is done by the posterior

predictive likelihood which measures the predictive accuracy of return density forecasts.

The economical comparison, which is our primary interest, is the mean absolute value

of the C-VaR forecast errors. According to the estimation results, among the competing

models the MSV with t-errors and time-varying conditional correlation produces the

most accurate C-VaR forecasts indicating maximum currency-hedging benefits.

Although this work is originally motivated by the foreign currency risk management,

our Bayesian portfolio analysis is generally applicable for other financial assets. There

are two reasons why we concentrate on foreign currency investment. The first reason is

that the variance-covariance structure of foreign currencies is strongly time-varying as

reported in many studies, including Kim et al. (1998a), Kulikova and Taylor (2013), and

Kastner, Frühwirth-Schnatter, and Lopes (2014). The second reason is that the return

distribution of foreign currencies tends to follow a non-normal asymmetric distribution,

which is suitable for C-VaR risk measure.

The remainder of the paper is organized as follows. Section 2 discusses the details of

C-VaR portfolio optimization. In Sections 3 and 4, we propose our MSV model and pro-

vide a Bayesian MCMC algorithm for estimation and prediction. Section 5 illustrates the

empirical application and reports the results of the out-of-sample experiments. Finally,

Section 6 concludes the paper.
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2 C-VaR and Portfolio Selection

Throughout this paper we consider k different foreign assets and currencies. The invest-

ment horizon is denoted by h, and the vectors of h-period-ahead foreign asset returns

expressed in the domestic currency and the corresponding portfolio weights are denoted

by y and x, respectively. We also consider a downside risk-averse investor whose loss

function equals 1 when the realized portfolio return is less than the (1-β) level VaR,

and equals 0 otherwise. β is a investor-specific credibility level. For loss function mini-

mization, the investor optimizes the international portfolio by minimizing the (1-β) level

C-VaR under the expected return constraint with respect to the portfolio weight x given

the predictive distribution of returns:

min
x
ζ + (1− β)−1

∫
[max{f(x, y)− ζ, 0}]× p(y)dy (2.1)

subject to

E[x′y] ≥ µ̄ + c(x), (2.2)∑k

i=1
xi = 1, and xi ≥ 0 for all i = 1, 2, .., k (2.3)

where x′y is the portfolio return and ζ is the (1-β) level VaR that is a function of

x. c(x) is the transaction cost and µ̄ is a minimum expected portfolio return that the

investor can tolerate. µ̄ and β are both chosen by the investor a priori depending on his

preference. f(x, y) = −x′y is the loss function, and p(y) is the joint probability density

function of y. The equation (2.1) is the C-VaR objective, which is the sum of the VaR

and the expected loss beyond the VaR. Equation (2.2) is the expected return constraint.

Note that one can include the domestic currency as a risk-free asset into the portfolio

by substituting the restriction
∑k

i=1 xi = 1 with
∑k

i=1 xi ≤ 1.

Unfortunately, this optimization problem is not analytically solved in general. In-

stead, we rely on a simulation method. Suppose that {y(i)}ni=1 is the samples drawn

from the joint return distribution where n is a large simulation size. Given {y(i)}ni=1,

we are able to easily obtain the optimal portfolio weights x∗ through Algorithm 1. The

first four steps numerically calculate the C-VaR along with the VaR as a function of the

portfolio weights. Then, we minimize the C-VaR with respect to the portfolio weights

using a grid search.

Algorithm 1: C-VaR Portfolio Optimization

Given the h-period-ahead return samples {y(i)}ni=1,
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Step 1: Propose a portfolio vector x = (x1, ..., xk)′ satisfying the constraint in equation

(2.3)

Step 2: Obtain the samples of the portfolio return,

{x′y(i)}ni=1

Step 3: Calculate the expected return of portfolio,

µ̂(x) = n−1
∑n

i=1
x′y

(i)

and check whether it satisfies the constraint in equation (2.2).

Step 4: If µ̂(x) ≥ µ̄ , then sequentially calculate the VaR and C-VaR of the portfolio.

Otherwise, the proposed value x is discarded.

Step 5: Repeat steps 1 to 4 a number of times.

Step 6: Select x∗ minimizing the C-VaR.

3 Multivariate Stochastic Volatility Models

3.1 Joint Return Process

This section describes our predictive models for multivariate density forecasting. Sup-

pose that yt = [y1t, ..., ykt]
′ is a k × 1 vector of foreign asset returns in terms of the

domestic currency a time t. Note that the foreign asset return in the domestic currency

is the sum of the asset return in the foreign currency and the currency return. The

foreign asset returns are assumed to be linear to a k × 1 vector of time-varying latent

factors, ft such that
y1t
y2t
...
ykt


︸ ︷︷ ︸

=


δ1
δ2
...
δk


︸ ︷︷ ︸

+


1 0 ... 0
γ21 1 ... 0
... ... ... 0
γk1 γk2 ... 1


︸ ︷︷ ︸


f1t
f2t
...
fkt


︸ ︷︷ ︸

yt δ Γ ft

. (3.1)
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Let ST (a, b, ν) denote the Student-t distribution where a is its mean, b is the scale

parameter, and ν is the degrees of freedom. Then, each of the latent factors follows a

first-order autoregressive process with stochastic volatility such that

fi,t|φi, fit−1, Vit ∼ ST
(
φifi,t−1, V

2
i,t, ν

)
(3.2)

where

αi,t|µi, ϕi, αi,t−1, σ2
i ∼ N

(
µi + ϕiαi,t−1, σ

2
i

)
, (3.3)

and Vit = exp(αi,t/2) for i = 1, ..., k.

Suppose that λt follows a gamma distribution, G(ν/2, ν/2). Then, the equation (3.2)

can be rewritten as

fi,t|φi, fi,t−1, Vi,t, λt ∼ N
(
φifi,t−1, λ

−1
t V 2

i,t

)
,

by the method of composition.

The lower triangular elements of the Γ matrix are to be estimated. Non-zero estimates

indicate the presence of common factors among the returns. Because of the presence of

common factors with time-varying volatility, the conditional correlations of the returns

also change over time. As such, we note that, given the observed return yt, the latent

factors are easily obtained as

ft = Γ−1(yt − δ) (3.4)

because the foreign asset returns are observed without errors and the dimensions of

the observed asset returns and latent factors are the same. Suppose that Ft = {yi}ti=0

denotes the information up to time t. By plugging equation (3.4) into the factor process

in equation (3.2) we can obtain the joint conditional distribution of the returns as

yt|δ, Γ, φ, Vt,Ft−1, λt ∼ N
(
δ − ΓφΓ−1δ + ΓφΓ−1yt−1, λ

−1
t ΓVtV

′
t Γ′
)

(3.5)

where φ = diag(φ1, φ2, .., φk) and Vt = diag (V1,t, V2,t, .., Vk,t). For the case of k = 3,

conditioned on the lagged returns, the stochastic volatilities, and the parameters, the

conditional variance-covariance matrix of the returns at time t is

λ−1t ΓVtV
′
t Γ′ = λ−1t

 V1t γ21V1,t γ31V1,t
γ21V1t γ221V1,t + V2,t γ21γ31V1,t + γ32V2,t
γ31V1t γ21γ31V1,t + γ32V2,t γ231V1,t + γ232V2,t + V3,t

 ,
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and the conditional correlation is given by
1

γ21V1,t√
V1,t
√
γ221V1,t+V2,t

γ31V1,t√
V1,t
√
γ231V1,t+γ

2
32V2,t+V3,t

γ21V1,t√
V1,t
√
γ221V1,t+V2,t

1
γ21γ31V1,t+γ32V2,t√

γ221V1,t+V2,t
√
γ231V1,t+γ

2
32V2,t+V3,t

γ31V1,t√
V1,t
√
γ231V1,t+γ

2
32V2,t+V3,t

γ21γ31V1,t+γ32V2,t√
γ221V1,t+V2,t

√
γ231V1,t+γ

2
32V2,t+V3,t

1

 .
Hence, the conditional correlations along with the volatilities change over time, which

generates time-varying diversification effects.

3.2 Prior

Bayesian modeling is completed by specifying a prior for the parameters. The uncondi-

tional mean of the returns, δi is assumed to be normally distributed. The mean is given

by zero because the log of nominal exchange rates tend to follow a random-walk process

without drift.

δi ∼ N (b0,δ, B0,δ) ≡ N (0, 1), i = 1, 2, .., k. (3.6)

A priori we assume the presence of k common factors among the returns. The prior

variance of γij’s is set to be large, so that our prior belief is not too strong.

γij ∼ N (bij,0,γ, Bij,0,γ) ≡ N (0, 1), i, j = 2, ..., k, i > j. (3.7)

Next, the autoregressive coefficient φi is constrained to lie on the interval (-1, 1), and

this is assumed to follow a beta distribution such that

φi + 1

2
∼ beta(a0,φ, b0,φ) ≡ beta(5, 5), i = 1, 2, .., k. (3.8)

The financial asset return persistence is typically small, so our prior mean of φi’s is zero.

Meanwhile, the exchange rate volatilities are known to be persistent. For the normal

error models, the prior mean of ϕi is set to be close to one.

ϕi ∼ N (b0,ϕ, B0,ϕ) ≡ N (0.9, 1), i = 1, 2, .., k. (3.9)

Meanwhile, we specify a stronger prior for the fat-tailed models such that

ϕi ∼ N (b0,ϕ, B0,ϕ) ≡ N (0.9, 0.01), i = 1, 2, .., k. (3.10)

Otherwise, the stochastic volatilities are not well-identified because of the fat-tail prop-

erty. The intercept term µi is identified by the log unconditional variance of the returns
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given the other parameters. Considering the scale of the returns, our prior mean of µi’s

is -0.5.

µi ∼ N (b0,µ, B0,µ) ≡ N (−0.5, 1), i = 1, 2, .., k. (3.11)

The conditional variance of the log conditional factor variance αit(= log V 2
it ) follows an

inverse-gamma distribution,

σ2
i ∼ IG(a0,σ, b0,σ) ≡ IG(2, 0.1), i = 1, 2, .., k. (3.12)

Finally, the degree of freedom of the assets following Student-t distribution, λt follows

a gamma distribution,

λt ∼ G(ν/2, ν/2) ≡ G(5, 5), t = 1, 2, .., T. (3.13)

The degree of freedom is fixed at ν = 10.

3.3 Candidate Prediction Models

Suppose that the MSV model explained in the previous section is denoted by SVCt. In

order to account for the model uncertainty, we consider another four model specifications

as special cases of the SVCt model. The following describes each of the competing

models:

• FV: First-order vector-autoregressive model with constant variance-covariance

• SVn: MSV model with normal errors and zero conditional correlations

• SVCn: MSV model with normal errors and time-varying conditional correlations

• SVt: MSV model with Student-t errors and zero conditional correlations

• SVCt: MSV model with Student-t errors and time-varying conditional correlations

Note that the γij’s are constrained to be zero in the SVn and SVt models. In this

paper we deal with the model uncertainty by choosing the best model in term of the

out-of-sample C-VaR prediction performance. Although our models are flexible in fitting

financial asset returns, they have several deficiencies. For example, the MSV model with

non-zero constant correlations is not included as this is not a restricted model of the

SVCt model. Moreover, they do not take account of a jump or drastic regime shifts in

the return process, either.
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4 Posterior Sampling

In this section we illustrate the MCMC sampling procedure of the SVCt model that is

the most general specification among the candidate models. The set of model parameters

is denoted by

θ = {γ, δ, µ, ϕ, φ, σ2, Λ}

where

γ = {γij|i, j = 1, 2, 3, .., k., i > j},

µ = {µi}ki=1, ϕ = {ϕi}ki=1, σ
2 = {σ2

i }ki=1,Λ = {λt}Tt=1.

The time series of the factors and the log stochastic volatilities are denoted by F = {ft}Tt=1

and A = {{αi,t}ki=1}Tt=1, respectively.

This section presents our posterior simulation of the parameters and the time series

of the stochastic volatilities, (θ,A). Given the observations Y = {yt}Tt=1, these are

simulated from their joint posterior distribution

θ,A|Y.

Its density is given by

π(θ,A|Y) ∝ p(Y|θ,A)× p(A|θ)× π(θ),

which is proportional to the product of the conditional return density, the conditional

volatility density, and prior density of the parameters.

From equation (3.5) the conditional densities of the returns, p(Y|θ,A) are obtained

as

p(Y|θ,A) (4.1)

=
∏T

t=1
N
(
yt|δ − ΓφΓ−1δ + ΓφΓ−1yt−1, λ

−1
t ΓVtV

′
t Γ′
)

where the initial returns y0 are assumed to be observed from the data. The conditional

density of A, f(A|θ) is obtained from equation (3.3) as follows:

f(A|θ) =
∏k

i=1

[∏T

t=1
N
(
αi,t|µi + ϕiαi,t−1, σ

2
i

)]
.

Finally, the prior density of the parameters, π(θ), is simply the multiplication of

the densities of each parameter in equations (3.6) to (3.13), because all parameters are
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assumed to be independent a priori. It is important to note that once the posterior

draws for (θ,A) are obtained from the posterior simulation, the posterior draws for the

factors and stochastic volatilities are immediately retained as

F= {Γ−1(yt − δ)}Tt=1 and

V= { exp(α1t/2), exp(α2t/2), .., exp(αkt/2)}Tt=1,

respectively. Particularly, it is a great advantage that simulation stage with a high

computational cost such as forward and backward recursions is not necessary for factor

sampling. This enables us to identify the stochastic volatilities in a more stable way.

We simulate (θ,A) in multiple blocks as direct simulation from the joint posterior dis-

tribution is not feasible. Particularly, the stochastic volatility process is sampled based

on the method of Kim, Shephard, and Chib (1998b). The key idea of their approach

is to approximate the log squared normal errors by a mixture of normal distributions.

The mixture is governed by state variables. Therefore, in each MCMC cycle, the time

series of stochastic volatilities and state variables are simulated sequentially. Suppose

that the time series of the state variables are denoted by

S = {{si,t}Tt=1}ki=1.

Our MCMC algorithm can be summarized as follows.

Algorithm 2: Posterior MCMC simulation

Step 0: Initialize θ and S.

Step 1: Sample A|θ,S,Y.

Step 2: Sample µ, ϕ, σ2|A,Y.

Step 3: Sample S|θ,Y.

Step 4: Sample γ|δ, φ,Λ,A,Y.

Step 5: Sample δ, φ|γ,Λ,A,Y.

Step 6: Sample Λ|δ, γ, φ,A,Y

Step 7: Sample yT+1|θ,A,Y.
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We begin by sampling the stochastic volatilities given the data and initialized pa-

rameters and state variables. Subsequently, the parameters in the stochastic volatility

process are simulated. Given the parameters and data, the state variables are sam-

pled. Next, the parameters in the factor loadings are simulated. After simulating the

unconditional mean of the returns, persistence coefficients, and the time series of the

scale parameters, the posterior predictive distribution of the returns are sampled. In the

following, we explain the details of each MCMC stage.

4.1 Sampling A|θ,S,Y

To sample the stochastic volatility processes given the parameters and data, we obtain

the time series of the factors

F= {ft}Tt=1= {Γ−1(yt − δ)}Tt=1, (4.2)

and transform the factor process as follows. For i = 1, 2, .., k and t = 1, 2, .., T,

f̃i,t = fi,t − φifi,t−1 = exp(αi,t/2)εi,t (4.3)

It follows that the log of squares is expressed as a sum of the log squared volatility and

log squared factor shocks,

f ∗i,t = αi,t + ε∗i,t

with f ∗i,t = log(f̃ 2
i,t) and ε∗i,t = log(ε2i,t). According to the work of Kim et al. (1998b), the

distribution of ε∗i,t can be approximated by a mixture of seven normal distributions.

q Pr(si,t = q) msi,t Rsi,t

1 0.00730 −10.12999 5.79596
2 0.10556 −3.97281 2.61369
3 0.00002 −8.56686 5.17950
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 −1.08819 1.26261

As a result, the model can be expressed in a state-space representation,

f ∗i,t|αi,t, θ, si,t ∼ N (αi,t + msi,t , Rsi,t),

αi,t|θ, αi,t−1 ∼ N (µi + ϕiαi,t−1, σ
2
i )
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where the initial αi,0 follows the unconditional distribution of αi,t,

αi,0 ∼ N
(

µi
1− ϕi

,
σ2
i

1− ϕ2
i

)
.

Stochastic volatility sampling consists of two steps. The first step is to run the

Kalman filter and obtain the filtered distribution

αi,t|θ,S,Ft

for i = 1, 2, .., k. As αi,t’s conditioned on (θ,Ft) are normally distributed, the objective

of this step is to calculate the conditional mean and variance at each time t

E(αi,t|θ,S,Ft) = E(αi,t|θ,S,Ft−1)

+
[
V ar(αi,t|θ,S,Ft−1)/V ar(f ∗i,t|θ,S,Ft−1)

]
× (f ∗i,t − E(f ∗i,t|θ,S,Ft−1)),

V ar(αi,t|θ,S,Ft) = V ar(αi,t|θ,S,Ft−1)

−
[
V ar(αi,t|θ,S,Ft−1)/V ar(f ∗i,t|θ,S,Ft−1)

]
× V ar(αi,t|θ,S,Ft−1)

where

E(αi,0|θ,S,F0) =
µi

1− ϕi
, V ar(αi,0|θ,S,F0) =

σ2
i

1− ϕ2
i

,

E(αi,t|θ,S,Ft−1) = µi + ϕiE(αi,t−1|θ,S,Ft−1),

V ar(αi,t|θ,S,Ft−1) = ϕ2
iV ar(αi,t−1|θ,S,Ft−1) + σ2

i ,

E(f ∗i,t|θ,S,Ft−1) = E(αi,t|θ,S,Ft−1) + msi,t ,

and V ar(f ∗i,t|θ,S,Ft−1) = V ar(αi,t|θ,S,Ft−1) + Rsi,t .

The second step is the backward recursion. At time T , αi,T is sampled from its

filtered distribution,

αi,T |θ,S,Y ≡ αi,T |θ,S,FT ∼ N (E(αi,T |θ,S,Y), V ar(αi,T |θ,S,Y))

as FT = Y by definition. Given αi,t+1, αi,t (t = T − 1, T − 2, .., 1) is sampled from its

conditional distribution,

αi,t|θ,S,Y ≡ αi,t|θ,S,Ft+1 ≡ αi,t|θ,S,Ft,αi,t+1

∼ N (E(αi,t|θ,S,Ft, αi,t+1), V ar(αi,t|θ,S,Ft, αi,t+1))

The conditional mean and variance are given by

E(αi,t|θ,S,Ft, αi,t+1)
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= E(αi,t|θ,S,Ft) + [V ar(αi,t|θ,S,Ft)× ϕ/V ar(αi,t+1|θ,S,Ft)]× (αi,t+1 − E(αi,t+1|θ,S,Ft)),

V ar(αi,t|θ,S,Ft,αi,t+1)

= V ar(αi,t|θ,S,Ft)− [V ar(αi,t|θ,S,Ft)/V ar(αi,t+1|θ,S,Ft)]× V ar(αi,t|θ,S,Ft),

respectively. The samples drawn from this backward recursion are taken as posterior

draws for {αi,t}Tt=1.

The Kalman filtering and backward recursion are repeated for each i = 1, 2, .., k,

which completes the joint sampling of A = {α1,t, α2,t, .., αk,t}Tt=1 given (θ,S,Y).

4.2 Sampling µ, ϕ, σ2|A,Y

Given (A,Y), the full conditional distributions of (µ, ϕ) and σ2 are tractable because

the stochastic process for αi,t in equation (3.3) is a standard linear regression and their

priors are conjugate. Suppose that β0 = ( b′0,µ b′0,ϕ )′ is the prior mean of (µi, ϕi) and

B0 =

(
B0,µ 0

0 B0,ϕ

)
is the prior variance-covariance. Then, (µi, ϕi) is first sampled from its full conditional

distribution, (
µi
ϕi

)
|A,σ2

i ∼ N (B−11 A1, B
−1
1 ),

where

B1 = B−10 +
T∑
t=2

(1 αi,t−1)′ × (1 αi,t−1) /σ2
i ,

A1 = B−10 β0 +
T∑
t=2

(1 αi,t−1)′ × αi,t/σ2
i .

Now, given (µi, ϕi) and A, σ2
i is drawn from the inverse gamma distribution,

σ2
i |αi,t, αi,t−1 ∼ IG

(
a0,σ + T

2
,
b0,σ +

∑T
t=1(αi,t − µi − ϕiαi,t−1)2

2

)
.

Sampling (µ, ϕ, σ2) |A,Y is completed by repeating (µi, ϕi, σ
2
i ) sampling for i = 1, 2, .., k.

4.3 Sampling S|θ,A,Y

Next, the state variables that govern the distribution of the log squared errors over time

are sampled. Given (θ,Y), F is obtained as in equation (4.2), and

{{f ∗i,t = log((fi,t − φifi,t−1)2)}Tt=1}ki=1
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is constructed. Then, the full conditional mass of si,t = q is proportional to the product

of the conditional density of f ∗i,t and the prior mass of si,t = q.

Pr(si,t = q|θ,A,Y) = Pr(si,t = q|f ∗i,t, αi,t) (4.4)

∝ p(f ∗i,t|αi,t, st = q)× Pr(si,t = q)

= N
(
f ∗i,t|αi,t + mq, Rq

)
× Pr(si,t = q), q = 1, 2, .., 7

Therefore, si,t = q is drawn with the probability

Pr(si,t = q|θ,A,Y) =
N
(
f ∗i,t|αi,t + mq, Rq

)
× Pr(si,t = q)∑7

j=1N
(
f ∗i,t|αi,t + mj, Rj

)
× Pr(si,t = j)

independently of the other state variables. The simulation of S is done by sampling si,t

for all i = 1, 2, .., k and t = 1, 2, .., T.

4.4 Sampling γ|δ, φ,Λ,A,Y

The full conditional density of γ is given by

π(γ|δ, φ,Λ,A,Y) ∝ p(Y|θ,A)× π(γ)

= p(Y|θ,A)×

[∏
i>j

N (γij|bij,0,γ, Bij,0,γ)

]
(4.5)

The complete likelihood p(Y|θ,A) and the prior density of π(γ) are given in equations

(4.1) and (3.7), respectively. Because the full conditional distribution is not tractable,

we rely on the random-walk Metropolis-Hastings (RW-MH) algorithm. The efficiency

of the RW-MH method depends on the variance-covariance of the proposal distribution,

RRW , which should be chosen carefully. At the gth MCMC cycle, the inverse of negative

hessian computed at the (g-1)th MCMC draw γ(g−1),

RRW=

[
−
∂∂
(
log p(Y|θ(g−1),A) + log π(γ(g−1))

)
∂γ(g−1)∂γ(g−1)′

]−1
is used as RRW , and a candidate γ∗ is drawn from the normal distribution,

γ∗ ∼ N (γ(g−1),RRW ).

Then, the candidate is accepted and retained as the gth MCMC draw γ(g) with the usual

MH probability

min

{
p(Y|γ∗, δ(g−1), φ(g−1),A)× π(γ∗)

p(Y|γ(g−1), δ(g−1), φ(g−1),A)× π(γ(g−1))
, 1

}
.

If it is rejected, γ(g−1) is saved, instead.
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4.5 Sampling δ, φ|Γ,Λ,A,Y

As shown in equation (3.5), the conditional expectation of the returns is nonlinear to

(δ, φ), and their full conditional distribution is not feasible. Like γ, (δ, φ) are sampled

through the RW-MH method. Moreover, the target density of this block in each MCMC

iteration is given by

p(δ, φ|Γ,Λ,A,Y) ∝ p(Y|θ,A)× π(δ)× π(φ)

∝ p(Y|θ,A)×

[
k∏
i=1

N (δi|b0,δ, B0,δ)

]
×

[
k∏
i=1

beta(
φi + 1

2
|a0,φ, b0,φ)

]

where π(δ) and π(φ) are the prior densities of δ and φ, respectively.

4.6 Sampling Λ|δ, φ, Γ,A,Y

Given (θ,Y), Λ = {λt}Tt=1 is sampled via a single move. The full conditional distribution

of λt is tractable as yt is normally distributed given θ and its gamma prior is conjugate.

The full conditional distribution is obtained as a gamma distribution such as

p(λt|δ, φ, Γ,A,Y) ∝ p(Y|θ,A)× π(λt)

∝ p(yt|θ,A)× G(λt|ν/2, ν/2)

∝ G
(
λt|
ν + 1

2
,
ν + ỹ′tΣ

−1
t ỹt

2

)
where ỹt = yt − δ + ΓφΓ−1δ − ΓφΓ−1yt−1 and Σt = ΓVtV

′
tΓ
′.

4.7 Sampling the Posterior Predictive Distribution

Once the posterior draws for (θ,A) are obtained from the Steps 1 to 5 in each MCMC

cycle, the h-period-ahead posterior predictive draws of the returns can be simulated by

the following algorithm.

Algorithm 3: Posterior predictive distribution simulation

For j = 1, 2, .., h,

Step 1: Sample αi,T+j|θ,A ∼ N(µi + ϕiαi,T+j−1, σ
2
i ) for i = 1, 2, .., k

17



Step 2: Sample yT+j|δ, φ, Γ, VT+j,Y from

ST
(
δ − ΓφΓ−1δ + ΓφΓ−1yT+j−1, ΓVT+jV

′
T+jΓ

′, ν
)

where VT+j = diag (exp(α1,T+j/2), exp(α2,T+j/2), .., exp(αk,T+j/2))

Step 3: Retain yT+j as a h-period-ahead posterior predictive draw

4.8 Predictive Density Accuracy Measure

To minimize the estimation risk in portfolio selection, the joint predictive distribution

of the asset returns should be accurate. Otherwise, the decision-making based on a poor

return prediction may result in a much heavier loss than expected especially when the

risk is underestimated or the expected return is overestimated. Thus, the predictive ac-

curacy is a prerequisite of a successful risk management. We evaluate the out-of-sample

predictive density accuracy of the prediction models. As suggested by Eklund and Karls-

son (2007), the density prediction performance is measured by the posterior predictive

likelihood(PPL). This is the product of the posterior predictive densities over the out-

of-sample periods. The posterior predictive density(PPD) is the conditional density of

the realized one-period-ahead returns y∗T+1 conditioned on the observation. The PPD,

p(y∗T+1|Y) is computed by integrating out the conditional density p(y∗T+1|θ,A,Y) over

the parameters and stochastic volatilities. That is,

p(y∗T+1|Y) =

∫
p(y∗T+1|θ,A,Y)× π(θ,A|Y)d(θ,A). (4.6)

However, the integration cannot be done analytically, and we rely on the numerical

approximation as

p(y∗T+1|Y) ;
1

n1

n1∑
g=1

p(y∗T+1|θ(g),A(g),Y) (4.7)

where (θ(g),A(g)) are the posterior draws. Further, p(y∗T+1|θ(g),A(g),Y) is not fea-

sible analytically, either. For this reason, it is also computed by numerically inte-

grating out the one-period-ahead stochastic volatilities from the conditional density

p(y∗T+1|VT+1, θ,A,Y) as follows:

p(y∗T+1|θ(g),A(g),Y) =

∫
p(y∗T+1|VT+1, θ,A,Y)× p(VT+1|θ,A,Y)dVT+1

;
1

1, 000

1,000∑
j=1

p(y∗T+1|V
(j)
T+1, θ

(g),A(g),Y) (4.8)
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where

α
(j)
i,T+1|θ

(g),A(g),Y ∼ N (µ(g) + ϕ(g)α
(g)
i,T , σ

2(g)
i ), i = 1, 2, .., k,

V
(j)
T+1 = diag(exp(α

(j)
1,T+1/2), exp(α

(j)
2,T+1/2), .., exp(α

(j)
k,T+1/2)),

λ
(g)
T+1 ∼ G(5, 5), (4.9)

and

p(y∗T+1|V
(j)
T+1, θ

(g),A(g),Y)

= N (y∗T+1|δ(g) − Γ(g)φ(g)Γ(g)−1δ(g) + Γ(g)φ(g)Γ(g)−1yT , λ
(g)−1
T+1 Γ(g)V

(j)
T+1V

(j)′
T+1Γ(g)′).

Note that the PPL is model-dependent, and we denote the PPL of the modelM by

PPL(M), which is computed as

PPL(M) =
H∏
h=1

p(y∗T+h|FT+h−1,M)

where the out-of-sample size is H. Using the log PPL we evaluate the relative out-of-

sample density prediction performance among the models.

The PPL is one of the standard Bayesian model choice criteria. Nevertheless, using

the PPL is not desirable for the model choice in this work. Our primary model selection

criterion is the C-VaR forecasting performance. The aim of this work is to precisely

quantify and minimize the extreme loss or downside risk whereas the PPL measures the

predictive accuracy over the entire support of the return distribution.

5 Application

5.1 Data

The underlying assets considered in our application are the foreign government bonds

whose the maturity is one week. The one-week bond yield is almost zero, and its variation

is much smaller than that of the exchange rate. For this reason, we use currency return

data only in this application. Of course, in case of different underling assets such as

stocks, long-term government bonds, and the corporate bonds, the underlying asset

return in terms of the foreign currency should be added to the currency return.

The data used in this paper are three foreign exchange rates: USD per EUR, USD

per JPY, and USD per KRW. Our choice of these foreign currencies is based on the fact

that each of them has its own unique characteristics as an investment asset. EUR is the
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second most traded currency and JPY is regarded as a safety asset during financial crises.

KRW is a representative currency of the developing countries and it tends to depreciate

sensitively to regional shocks as well as changes in global economic factors. It should be

noted that, although we consider only three foreign currencies in this application, our

methodology is generic to the number and components of the currencies and underlying

financial assets.

Our exchange rate data is weekly, ranging from the first week of 1999 to the 15th

week of 2016, as plotted in Figure 1. The total observations are 900 weekly currency

returns for each currency, and these data can be obtained from the FRB of St. Louis

FRED Economic Data. For the in-sample analysis, we use the entire 900 return obser-

vations in order to sample the model parameters, stochastic volatilities, and conditional

correlation. For the out-of-sample portfolio choice experiment, we simulate the one-

week-ahead predictive distributions of the currency returns for the past 150 weeks. The

investment horizon is set to be one week, and this can be easily generalized to a longer

horizon. The rolling window size is 750 weeks. The first out-of-sample forecast is the

22nd week of 2013 and the last one is the 15th week of 2016.

Given the joint return density forecasts, the C-VaR portfolio optimization is con-

ducted. The credibility levels considered in this paper are 50%, 75%, and 90%. Although

the higher levels such as 95% and 99% are more desirable for extreme risk management,

they are excluded because the out-of-sample size seems to be too small for the C-VaR

forecasts to be compared among the alternative prediction models.

5.2 Estimation Results

Our MCMC size is 10,000 and the first 5,000 draws are discarded to ensure the con-

vergence of the Markov chain. Figure 2 displays the prior and posterior distributions

of each parameter in the SVCt model, which is the most general specification among

the competing models. As shown in the figure, the posterior densities are much sharper

than the corresponding prior densities. This means that the data is informative and the

posterior densities are determined by the information in the data rather than the prior

information.

Table 1 reports the estimation results for the parameters in the four MSV models.

In this table, δi;s are estimated to be small for all assets and models as its 90 % credi-

bility interval includes 0, except for the KRW. φi’s, the autoregressive coefficients of the

factors are also estimated to be close to zero, which means a very strong mean-revering

20



property of the currency returns, which is well-known. Meanwhile, the estimates of the

autoregressive coefficients of the log stochastic volatilities are highly positive, and the

volatilities are found to be persistent except for the second factor. In addition, all γ’s in

the SVCn and SVCt models are very precisely estimated to be non-zero, which indicates

the presence of co-movement among the currencies.

On the other hand, we check the convergence of the Markov chain and the efficiency

of the sampling scheme in terms of the serial correlation of the MCMC draws following

Chib and Ramamurthy (2010) and Chib and Kang (2013). Figure 3 displays the results

for the autocorrelation functions for the SVCt model. As seen from this figure, the

autocorrelations decay to zero fast indicating high efficiency of the sampling algorithm.

Of course, the parameters sampled from the MH method reveal the higher persistence

than those sampled by the Gibbs-sampler. Formally, the inefficiency for each parameter

sampling is measured by the inefficiency factor, which is computed as

1 + 2
200∑
l=1

ρ̂(l)

where ρ̂(l) is the estimate of the lth order autocorrelation. By definition, a small inef-

ficiency factor means a well-mixing sampler. The results for the inefficiency factors of

the SVCt model can be found in the last column of Table 1.

Figure 4 shows the time series of the estimated stochastic volatilities and conditional

correlations over the entire sample period. As expected, all currency returns reveal a

strong evidence for time-varying volatilities. Further, the conditional correlations as

well as the volatilities dramatically change over time between 0.1 and 0.8. Overall, the

correlation between EUR and JPY is higher than the other correlations. The drastic

changes in the volatilities and correlations imply that the diversification effect is not

fixed and the optimal portfolio shares must be dynamic, not static.

5.3 Economic Evaluation: Out-of-Sample Portfolio Performance

We follow the approach of Gerlach and Chen (2016) and evaluate our method in terms

of risk management. The economic evaluation measure used in this paper is the mean

absolute error(MAE) of the one-week-ahead C-VaR forecasts, which is computed as( ∑
t∈OSP

I(y∗t < V̂aRt)

)−1
×
∑
t∈OSP

[
|y∗t − Ĉ-VaRt| × I(y∗t < V̂aRt)

]
where OSP is the set of the out-of-sample periods, I(·) is an indicator function, y∗t is

the realized portfolio return, and V̂aRt and Ĉ-VaRt are one-week-ahead VaR and C-VaR
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forecasts at time t, respectively. This MAE of the C-VaR forecasts is a proxy of the

average loss caused by the C-VaR prediction error during the out-of-sample periods. As

the MAE of the C-VaR forecasts is larger, the currency-hedging benefits compared to

the costs of implementing the hedges decrease.

Optimal Portfolio Weights Before we compare the portfolio performance of each of

the models, we discuss the results for the optimal portfolio weights obtained from the C-

VaR minimization. Figure 5 and 6 show the time series of the portfolio weights when the

transaction cost is zero and 0.1%, respectively. The transaction cost is assumed to occur

in both buying and selling assets. For instance, suppose that we sell 0.2 shares of EUR

and buy same amount of JPY. Then, the cost is 0.2×0.1%+0.2×0.1%=0.04%, and the

expected portfolio return decreases by this amount. Those portfolio weights minimize

the 10% C-VaR under the constraint that the expected portfolio return is greater than

-0.2%.

There are two interesting findings resulting from these figures. First, not surprisingly,

the FV model yields almost constant weights over time as the variance-covariance matrix

is constrained to be fixed during the rolling windows. However, the optimal weights based

on the stochastic volatility models dramatically change over time. Until the early 2015,

the share of the JPY was smaller than the others because the JPY was more volatile than

the other currencies as shown in Figure 7. This figure plots the predictive volatilities

and correlations of the currency returns over the out-of-sample periods. Since EUR

and KRW became more volatile than the JPY because of the prolonged EU economy

downturn and the announcement of the U.S. Fed tapering policy, however, the JPY has

been more attractive as a safe asset for risk management.

Second, the changes in the portfolio weights when the transaction cost is 0.1% are

much smoother than those when the cost is zero. For instance, the weight on JPY in

March 2015 changed from 0.42 to 1.0 based on the SVCt density forecasts when the

transaction cost is zero. Meanwhile, when the transaction cost is 0.1%, it changed to

0.7, not 1.0. This is because the responses of the portfolio weights on the changes in the

predictive joint distribution of the currency returns are less sensitive as the transaction

cost increases.

C-VaR Forecasts We now evaluate the out-of-sample foreign currency portfolio per-

formance based on the accuracy of the C-VaR forecasting, reported in Table 2. We

concentrate on the benchmark case, in which the credibility level is 90% and the trans-
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action cost is 0.1% because our focus is on tail risk management and non-zero transaction

cost is more realistic.

The accuracy of the C-VaR forecasting is measured by the MAE of the C-VaR fore-

casts. The C-VaR prediction error is the difference between the C-VaR forecasts and

the realized portfolio return when the realized portfolio return is less than the VaR

forecasts. For this reason, the evaluation of the VaR forecasting should be conducted

a priori. The models with a poor VaR prediction performance are not qualified to be

used for C-VaR forecasting. The VaR prediction performance is usually measured by

the coverage ratio, which is the frequency for which the realized portfolio returns are

below the 10%, 25%, and 50% quantiles of the predictive portfolio return distributions

during the out-of-sample periods, respectively. The corresponding results are reported

in Table 2(a). If the coverage ratio of a model is closer to (1 - the credibility level),

the model is regarded as better for VaR forecasting. A coverage ratio higher than (1 -

credibility level) implies underestimation of the downside risk. As one can see from the

table, the FV and SVCt models seem to outperform the others, whereas the SVn and

SVt models tend to underestimate the downside risk because of the restriction on the

conditional correlation. This also indicates that the conditional correlations among the

foreign currency returns are non-zero and play a critical role in the foreign currency risk

management.

Most importantly, Table 2(b) reports the predictive accuracy of the C-VaR forecasts.

The values in this table are the MAE of the C-VaR forecasts. Obviously, the SVCt

model outperforms the other models for the benchmark case while the SVCn model

seems to perform best for the lower credibility level. This is attributed to the fact that

the Student-t error helps to capture the extreme event due to the fat tail property. In

addition, the stochastic volatility models with time-varying correlations are preferred to

the benchmark FV model. For example, the MAE of the SVCt is 0.279 whereas that of

the FV model is 0.443.

Figure 8 plots the time series of the realized portfolio returns, VaR forecasts, and

C-VaR forecasts from the FV and SVCt models. As expected, the FV model pro-

duces almost constant VaR and C-VaR forecasts over time since the predictive variance-

covariance generated from the model is barely time-varying. Meanwhile, the risk mea-

sures estimated from the SVCt model change dramatically according to the density

forecasts. As a result, their portfolio performance is remarkably different. For instance,

the realized return from the FV model in October 2014 and March 2015 is much lower

than the C-VaR forecasts compared to the realized return from the SVCt model. This
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happened because the FV model underestimated the size of risk during the periods. In

contrast, unlike the SVCt model, the FV model seems to overestimate the risk in May

and June 2014 when the portfolio return is stable.

Finally, Table 3 reports a brief summary of the 10%, 25%, and 50% C-VaR mini-

mizations. The first column of the table shows the average realized portfolio returns

over the out-of-sample periods. The second and third columns are average realized C-

VaR and predicted C-VaR forecasts, respectively, which exceed the VaR forecasts. For

instance, in the case of a 10% C-VaR portfolio, these average values in the second and

third columns are computed using the realized returns and C-VaR forecasts only when

the realized portfolio return is less than the 10% VaR.

For the 10% C-VaR minimization, the SVn model produces the highest average C-

VaR returns, and the SVn model yields the highest average C-VaR forecasts. In case

of 25% C-VaR minimization, SVn and SVt seem to perform better than the others in

terms of the C-VaR returns and forecasts, while the FV model is the best for 50% C-VaR

minimization. However, it is important to notice that the smaller average realized C-

VaR and forecasts do not indicate a better out-of-sample portfolio performance, because

C-VaR realization is small when the risk is underestimated. This is why we evaluate the

portfolio performance in terms of the MAE of the C-VaR forecasts, not average realized

portfolio return lower than VaR.

5.4 Statistical Evaluation: Out-of-Sample Prediction Perfor-
mance

We compare the models in terms of the predictive density forecasting to supplement

the economic model selection. Figure 9 plots the log PPLs of the competing models

over time, which are obtained from the most recent 100 weeks’ density forecasts. This

figure demonstrates the relative out-of-sample density prediction accuracy among the

models. The result is consistent with that of the C-VaR prediction comparison. After

2013, the SVCt model seems to produce the best density forecasts consistently over the

out-of-sample periods. Until 2013, all models except the SVCn reveal similar predictive

performance. The performance of the SVCn model improves substantially, so that it

becomes better than that of the FV model. After all, incorporating the time-varying

volatilities and conditional correlations is found to be critical in improving multiple

foreign currency return density forecasting.
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6 Concluding Remarks

The contribution of our study is the proposal of a Bayesian method of C-VaR portfolio

optimization for foreign currency investment. This consists of two stages. In the first

stage, we estimate various multivariate stochastic volatility models for the joint predic-

tive currency return density simulation. Subsequently, given the density forecasts, the

best model is chosen based on both predictive density accuracy and C-VaR portfolio per-

formance. Using the best model, one should conduct the C-VaR portfolio optimization

to manage the left-tail risk.

Our out-of-sample experiment based on weekly USD/EUR, USD/JPY, and USD/KRW

return data indicates that the fat-tailed stochastic model with time-varying conditional

correlations produces the most accurate C-VaR forecasts, as well as density forecasts.

Particularly, the SVCt model leads to the smallest MAE of the C-VaR forecasts max-

imizing currency-hedging benefits. Meanwhile, the stochastic volatility models with

normal error or correlation tend to underestimate the left tail risk. In addition, the

optimal portfolio weights change over time dramatically, and their movement can be

smoother by incorporating the transaction cost. Lastly, we would like to emphasize that

our Bayesian approach for the C-VaR minimization portfolio choice can be generally

used for other investment assets such as stocks, bonds, commodities, and so forth.
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Kastner, G., Frühwirth-Schnatter, S., and Lopes, H. F. (2014), “Analysis of Exchange

Rates via Multivariate Bayesian Factor Stochastic Volatility Models,” in The Contri-

bution of Young Researchers to Bayesian Statistics, Springer Proceedings in Mathe-

matics and Statistics, pp. 181–185.

Kim, S., Shephard, N., and Chib, S. (1998a), “Stochastic volatility: likelihood inference

and comparison with ARCH models,” The Review of Economic Studies, 65, 361–393.

— (1998b), “Stochastic volatility: Likelihood inference and comparison with ARCH

models,” Review of Economic Studies, 65, 361–393.

Krokhmal, P., Palmquist, J., and Uryasev, S. (2002), “Portfolio optimization with con-

ditional value-at-risk objective and constraints,” Journal of Risk, 4, 43–68.

Kulikova, M. and Taylor, D. (2013), “Stochastic volatility models for exchange rates

and their estimation using quasi-maximum-likelihood methods: an application to the

South African Rand,” Journal of Applied Statistics, 40, 495–507.

Pajor, A. and Osiewalski, J. (2012), “Bayesian value-at-risk and expected shortfall for

a large portfolio (multi-and univariate approaches),” Acta Physica Polonica A, 121,

101–109.
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Table 1: Stochastic Volatility Parameters This table reports the posterior mean of the
stochastic volatility parameters. The standard errors are in the parentheses. Ineff. is the
inefficiency factor of the parameters in the SVCt model.

SVn SVCn SVt SVCt Ineff.

δ1 0.0123 0.0192 0.0034 0.0058 30.309
(0.0363) (0.0434) (0.0591) (0.0547)

δ2 -0.0322 -0.0553 -0.0492 -0.0691 42.298
(0.0449) (0.0454) (0.0568) (0.0532)

δ3 0.0807 0.1004 0.0976 0.1113 28.905
(0.0322) (0.0353) (0.0423) (0.0383)

γ21 0.0000 0.3634 0.0000 0.3867 19.533
(0.0000) (0.0322) (0.0000) (0.0473)

γ31 0.0000 0.2657 0.0000 0.2521 17.525
(0.0000) (0.0274) (0.0000) (0.0369)

γ32 0.0000 0.1532 0.0000 0.1773 26.722
(0.0000) (0.0268) (0.0000) (0.0381)

φ1 0.0846 0.0825 0.1127 0.1028 25.416
(0.0239) (0.0270) (0.0388) (0.0355)

φ2 0.0593 0.0647 -0.0115 -0.1111 29.671
(0.0217) (0.0242) (0.0973) (0.0375)

φ3 0.0971 0.0956 0.1075 -0.0771 30.435
(0.0311) (0.0325) (0.0364) (0.0314)

µ1 0.0257 0.0253 0.0671 0.0634 1.249
(0.0161) (0.0172) (0.0164) (0.0158)

µ2 0.1638 0.0995 0.0872 0.0592 1.985
(0.0548) (0.0434) (0.0180) (0.0154)

µ3 -0.0036 -0.0339 0.0198 0.0119 0.998
(0.0177) (0.0270) (0.0118) (0.0114)

ϕ1 0.9354 0.9352 0.9184 0.9196 2.378
(0.0420) (0.0499) (0.0147) (0.0144)

ϕ2 0.4185 0.4477 0.8954 0.9153 3.354
(0.1446) (0.1488) (0.0166) (0.0144)

ϕ3 0.8957 0.8371 0.9520 0.9550 1.720
(0.0321) (0.0493) (0.0099) (0.0094)

σ21 0.0515 0.0516 0.1032 0.1032 1.182
(0.0367) (0.0430) (0.0015) (0.0016)

σ22 0.5179 0.6683 0.1039 0.1038 0.884
(0.1478) (0.2049) (0.0016) (0.0016)

σ23 0.2416 0.4510 0.1037 0.1038 1.439
(0.0798) (0.1590) (0.0016) (0.0016)
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Table 2: Predictive Accuracy Comparison of VaR and C-VaR This table summarizes
the results of the out-of-sample VaR and C-VaR prediction. The credibility levels(β) considered
here are 90%, 75%, and 50%. Cost indicates the transaction cost.

(a) Coverage ratio

Cost=0% Cost=0.1%

1-β 10% 25% 50% 10% 25% 50%

FV 10.0% 27.3% 58.0% 10.7% 27.3% 58.0%
SVn 23.3% 34.7% 56.7% 23.3% 34.0% 57.3%
SVCn 12.7% 29.3% 54.0% 13.3% 28.0% 57.3%
SVt 12.7% 31.3% 56.7% 14.7% 32.0% 56.0%
SVCt 10.7% 28.7% 54.0% 9.3% 28.7% 54.0%

(b) Mean absolute error of the C-VaR prediction

Cost=0% Cost=0.1%

1-β 10% 25% 50% 10% 25% 50%

FV 0.438 0.390 0.475 0.443 0.386 0.470
SVn 0.337 0.350 0.440 0.338 0.348 0.454
SVCn 0.312 0.347 0.428 0.315 0.346 0.452
SVt 0.353 0.343 0.459 0.367 0.335 0.453
SVCt 0.317 0.441 0.488 0.279 0.429 0.477
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